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Radiances and Retrievals, 
as a primary and transformed data

• Advantage of retrievals: estimated CO can be 
compared against in situ and simulated CO projected 
onto retrieval space.

• Complexity of retrieval errors: radiance errors + 
inverse algorithm errors + assignment (modeling) of 
initial errors for a priori uncertainties.

• For data fusion: 
Second transform is needed for projection of 
retrievals onto the CTM grid. (Projection between 
spaces are not simple interpolation).

Single direct transform (inversion) is needed for 
radiance data to project them onto the CTM grid.



Assimilation schemes in the CTM: 
Retrievals vs Radiance Data 

Benefits of RDA schemes or Direct Projection:

1) Avoid intermediate projection of the primary data on the 
“climatological/demonstrative” retrieval space; 

2) Provide the scale-consistent solution of CO inverse and avoid 
assimilation of the potentially biased and scale-inconsistent 
smoothed CO retrievals;

3) Use the best knowledge for the instantaneous CO as a priori 
including CO uncertainties ( with ensemble CO forecasting).
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Role of Assimilation in Evaluation of CO Data

• First long-term global estimations of CO from radiances:
MOPITT =>  NASA/Terra
TES      =>  NASA/Aura
AIRS      =>  NASA/Aqua
MLS      =>  NASA/Aura

SCIMACHY =>  ESA/Envisat......(others, ACE/ODIN/IASI..)

• Assimilation of subset of CO data is a way to demonstrate 
consistency of information from multi-sensors in the CTM space.

• Assimilation of MOPITT & TES CO retrievals produces different CO 
adjustment vector (while CO Jacobians of  TES and MOPITT are 
rather similar in their vertical structures).

• In situ CO data can be used to evaluate retrievals and (or) 
assimilation of retrievals [flight (MOZAIC), campaign and surface 
(CMDL) CO]. 



Comparing satellite CO data with in situ 
observations and models (3 types)

• Fast look in the retrieval space => transform in situ
data (model) with Averaging Kernels (smooth/convert 
the tracer data to scales of instrument sensitivity).

• Analysis look in the radiance space => compute 
corresponding radiances with the in situ CO data (model) 
and compare simulated (with in situ data) and 
measured radiances.

• Data fusion look in the CTM space is to assimilate 
validated radiances:
1) evaluate radiances with in situ data (Analysis look);
2) use observed minus forecasted radiances to 

project the radiance misfit onto CO adjustment vector.



Fast Look in the Retrieval Space, Comparing 
Transformed Data: Retrievals and Forecasts 

Xpf = PXf = Xa + A(HXf-Xa)
• V3-MOPITT => Smoothed profiles as 

the deviations from the single a priori (Xa)

• V3 is the “demonstartive” product that 
estimates CO  with variable DFS.

• Data fusion needs the best a priori for 
CO in the zones of low DFS (weak and 
intermediate sensitivity).

• CTM provides the comprehensive CO 
forecast comparing to the single CO
profile (Xa) or ?-CO climatology.

• The best strategy with dynamical CO 
background => to assimilate radiance 
data in the CTM. It is ongoing 
NCAR/MOPITT project (similar to the 
direct assimilation of radiances in the 
NWP).

CTM: Xf Projection: Xpf

V3-MOPITTDFS=Tr(A)



MOPITT-TES as Characterized Retrievals
Rodgers and Connor [2003]: Simulating one profile retrieval with the 
other to examine consistency of instrument estimations in the same 
retrieval space.

Comparisons  in the Retrieval Spaces:

a) Based on the post-retrieval diagnostics averaging kernels
/A = KW/ and a priori /Xa/

b)  Projections between retrieval spaces
(Xp => Xpa ):   Xpa = Xa + A(HXp –Xa)

Kernels/Grids:   TES     => A1[89,89]   
MOPITT=> A2[ 7,  7] 

Ranks of A =>  Upscaling and Directions for the Second Transform:
rank(A1) ~ rank(A2)    => scale-consistent retrievals

rank(A1) > rank(A2)    => upscaling TES => MOPITT

rank(A1) < rank(A2)     => upscaling MOPITT =>TES



July 17/2005: MOPITT (top)-TES (bottom) CO, 700 hPa.
(TES footprint increased for color illustrations.)
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17/07/2005: MOPITT &TES CO retrievals
MOP_RET: Jul 17/2005
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Mapping TES CO retrievals and TES a priori to MOPITT 
“space” with MOPITT a priori and averaging kernels 

(all quantities are the “zonal” means).
MOPITT CO RETRIEVAL
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MOPITT-TES: Averaging Kernel (Resolution) Matrices
(common feature: weak sensitivity near the surface)

Tropics, 20S-20N:  MOPITT-AVK
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Limits  for application of  characterized retrievals 
in the data-data and model-data comparisons

• General limits: Application to the Linear (Moderate 
Nonlinear) Inverse Problems [Rodgers & Connor, 2003]. 

• Limits for the Broad Width CO IR Channels (MOPITT, 
TES, AIRS....): 
- optimal and scale-consistent retrievals of “broad” sub-
columns with  DFS <~ 1 can be compared/assimilated;

- Jacobians of CO should satisfy linear characterization 
W =/= W(X) in the vicinity of a priori and retrieval.
- It would difficult to expect consistency between
retrievals with different leading kernels.



Scale-Consistency in CO estimation

• Widths of CO Jacobians (6-10 
km) for thermal channels exceed 
the correlation lengths of in situ 
(model) CO (0.5-2 km).

• Consequence: the point-wise 
description of a priori 
covariance cannot be used 
directly in the CO inverse. 

• For the scale-consistent CO 
estimations from IR radiances 
=> UPSCALE the Inverse 
Problem to the width of CO 
Jacobians.
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CO estimation by the ensemble schemes with 
rank-deficient and scale-consistent 
formulations (MOPITT IR Channels)

[Tropical Biomass Burning Scene]

True COEns. mean CO 
forecast

δX-CO True & Optimal 

CO broad-width Jacobians

Ens. of Solutions



MOPITT: Ensemble-based schemes with 
SVD and rank-deficient formulations

Tropical Biomass

Burning Scene

SH ocean 

clean scene

True CO

Ens. mean CO Ens. mean CO

True & Optimal δX-CO

Wf-CO depends on CO loading, 
e.g. Nonlinear Characterization => 
Assimilation of CR is ?-able



Concluding remarks
• In Remind: Measured Radiances are the primary data. 

Estimated CO (retrievals) are transformed data.

• Ranking these data for tropospheric chemistry studies: 
- Primary data, IR radiances bear information on CO sub-columns 

rather than smoothed profiles;
- Cautions on CO retrievals (demonstrative products). They 

can be biased due to scale-inconsistent inverse solutions, reporting 
CO profiles instead of CO sub-columns (extra-sensitivity). 

• For scale-consistent CO estimation from radiances: 
CTM with ensemble forecasting provides the reasonable 
instantaneous CO background (vertical CO shapes, PBL CO 
loading, and initial errors). 

• Role Assimilation For Multi-Sensors: 
Assimilation of radiances can quantitatively evaluate consistency 
of information from the primary data, e.g.

MOPITT-TES-AIRS-SCIAMACHY........



How to proceed in comparisons of retrievals =>
1)  benchmarks; 2) the real data 

Compare information content from the radiance data (Jacobians, 
SVD, SV, # of effective channels).

Use the same Retrieval Space (CTM-grid), background CO and 
CO uncertainties to compare retrieval schemes.

Build the ensemble of CO estimation and post-retrieval 
diagnostics (kernels, sub-columns or profiles) for the set of the 
forward model errors (with fixed error metrics for non-retrieved 
parameters).

Establish Synthetic Benchmark for CO estimations from the 
MOPITT, TES, and AIRS IR radiances.

Proceed with the real radiance data (overpasses), assimilate 
measured radiances to show consistency of information from 
multi-sensors (full set of data, and subsets).



Ensemble-based scheme for projecting 
information from radiances to CTM space

• MOZART CTM with the NCEP analyses => Ensemble of CO 
profiles /CO uncertainties as perturbations from the ensemble mean/.

• MOPITT radiances minus the MOPFAS background radiances => 
Ensemble of the Residual Radiance Data,  δy

• Linear Inverse step :  δy = Wδx ,            rank(δy) =/= rank(δx)
(W- CO broad Jacobians, estimates δx –CO adjustment vector, or 

profiles)

• SVD scheme is a  scale-dependent inversion for the amplitudes 
of the singular vectors δα=Vtδx (not for the point-wise CO)

δy = US(Vtδx) = Wαδα ,   rank(δy) =rank(δα)

• MAP estimation of δα constrains the partial CO columns => 
Backward transform δx = Vδα => δx – estimation at the CTM grid.



How valid the KEY UNBIASED ASSUMPTION
(compare MOPITT retrievals and in situ CO data)?

• MOPITT CO against the flight CO data at the 
clean CMDL sites (overpasses) => positive 
bias (Emmons et al. 2003, limited #).

• Two sources for the statistical multi-year 
2001-2003 evaluation:  the CMDL surface CO 
and the flight MOZAIC CO (25o-55oN).

• CO histograms: 
MOPITT   vs CMDL for 3 lat-l bands; 
MOPITT   vs MOZAIC for 3 vertical layers.

• At the CMDL clean regions =>
MOPITT overestimates CO /positive bias due 

to crude a priori/. Assimilated CO agree well 
with the CMDL CO (value of CTM results as a 
good a priori ).

• At the polluted regions (NH airports) =>
Retrievals underestimate (negative bias) CO. 

• The current goal  => reduce these biases 
related with a priori crudeness and errors in 
the retrieval scheme (MOPITT-V4 ?). CMDL/NOAA 

sites
MOZAIC NH 

airports



Feb-Mar, 2001 CO: 
TRACEP(flight) – MOPITT(retrievals)
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 Feb-Mar: TRACEP-CO 
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 MOPITT: APRIL-CO 850 mb 
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 TRACEP: FEB-MARCH-CO 3-7 km 
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 MOPITT: APRIL-CO 500 mb 
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 TRACEP: FEB-MARCH-CO 7-12 km 
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 MOPITT: APRIL-CO 250 mb 

60 80 100 120 140 160 180
 Longitude 

0

10

20

30

40

50

60

 L
at

itu
de

  

Height-Latitude CO 
Composites 

Lat-Lon CO composites
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